Soil microbial community successional patterns during forest ecosystem restoration.
نویسندگان
چکیده
Soil microbial community characterization is increasingly being used to determine the responses of soils to stress and disturbances and to assess ecosystem sustainability. However, there is little experimental evidence to indicate that predictable patterns in microbial community structure or composition occur during secondary succession or ecosystem restoration. This study utilized a chronosequence of developing jarrah (Eucalyptus marginata) forest ecosystems, rehabilitated after bauxite mining (up to 18 years old), to examine changes in soil bacterial and fungal community structures (by automated ribosomal intergenic spacer analysis [ARISA]) and changes in specific soil bacterial phyla by 16S rRNA gene microarray analysis. This study demonstrated that mining in these ecosystems significantly altered soil bacterial and fungal community structures. The hypothesis that the soil microbial community structures would become more similar to those of the surrounding nonmined forest with rehabilitation age was broadly supported by shifts in the bacterial but not the fungal community. Microarray analysis enabled the identification of clear successional trends in the bacterial community at the phylum level and supported the finding of an increase in similarity to nonmined forest soil with rehabilitation age. Changes in soil microbial community structure were significantly related to the size of the microbial biomass as well as numerous edaphic variables (including pH and C, N, and P nutrient concentrations). These findings suggest that soil bacterial community dynamics follow a pattern in developing ecosystems that may be predictable and can be conceptualized as providing an integrated assessment of numerous edaphic variables.
منابع مشابه
Aboveground-belowground biodiversity linkages differ in early and late successional temperate forests
Understanding ecological linkages between above- and below-ground biota is critical for deepening our knowledge on the maintenance and stability of ecosystem processes. Nevertheless, direct comparisons of plant-microbe diversity at the community level remain scarce due to the knowledge gap between microbial ecology and plant ecology. We compared the α- and β- diversities of plant and soil bacte...
متن کاملEcosystem development in roadside grasslands: biotic control, plant-soil interactions, and dispersal limitations.
Roadside grasslands undergoing secondary succession are abundant, and represent ecologically meaningful examples of novel, human-created ecosystems. Interactions between plant and soil communities (hereafter plant-soil interactions) are of major importance in understanding the role of biotic control in ecosystem functioning, but little is known about these links in the context of ecosystem rest...
متن کاملAn historical perspective on forest succession and its relevance to ecosystem restoration and conservation practice in North America
Eugene Odum’s 1969 paper, The Strategy of Ecosystem Development, marks a watershed moment in approaches to the study of succession, ecosystem change caused by discrete disturbances. He argued that succession is unique from other kinds of change with regard to mechanisms (modification of the physical environment by the community), trajectory (orderly, directional and predictable), and endpoint (...
متن کاملDistinct Biogeographic Patterns for Archaea, Bacteria, and Fungi along the Vegetation Gradient at the Continental Scale in Eastern China
The natural forest ecosystem in Eastern China, from tropical forest to boreal forest, has declined due to cropland development during the last 300 years, yet little is known about the historical biogeographic patterns and driving processes for the major domains of microorganisms along this continental-scale natural vegetation gradient. We predicted the biogeographic patterns of soil archaeal, b...
متن کاملThe Soil Biota Composition along a Progressive Succession of Secondary Vegetation in a Karst Area
Karst ecosystems are fragile and are in many regions degraded by anthropogenic activities. Current management of degraded karst areas focuses on aboveground vegetation succession or recovery and aims at establishing a forest ecosystem. Whether progressive succession of vegetation in karst areas is accompanied by establishment of soil biota is poorly understood. In the present study, soil microb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 77 17 شماره
صفحات -
تاریخ انتشار 2011